
gaffer Documentation
Release

Author

May 27, 2013

CONTENTS

1 Gaffer 1
1.1 Features . 1
1.2 Contents: . 2

2 Indices and tables 15

i

ii

CHAPTER

ONE

GAFFER

Control, Watch and Launch your applications and jobs over HTTP.

Gaffer is a set of Python modules and tools to easily maintain and interact with your applications or jobs launched on
different machines over HTTP and websockets.

It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high
availability.

1.1 Features

• RESTful HTTP Api

• Websockets and SOCKJS support to interact with a gaffer node from any browser or SOCKJS client.

• Framework to manage and interact your applications and jobs on differerent machines

• Server and command-line tools to manage and interract with your processes

• manages topology information. Clients query gaffer_lookupd to discover gaffer nodes for a specific job or
application.

• Possibility to interact with STDIO and PIPES to interact with your applications and processes

• Subscribe to process statistics per process or process templates and get them in quasi RT.

• Procfile applications support (see gaffer) but also JSON config support.

• Supervisor-like features.

• Fully evented. Use the libuv event loop using the pyuv library

• Flapping: handle cases where your processes crash too much

• Easily extensible: add your own endpoint, create your client, embed gaffer in your application, ...

• Compatible with python 2.7x, 3.x

Note: gaffer source code is hosted on Github

1

http://sockjs.org
http://pyuv.readthedocs.org
http://github.com/benoitc/gaffer.git

gaffer Documentation, Release

1.2 Contents:

1.2.1 Getting started

This tutorial exposes the usage of gaffer as a tool. For a general overview or how to integrate it in your application
you should read the overview page.

Introduction

Gaffer allows you to launch OS processes and supervise them. 3 command line tools allows you to use it for now:

• gafferd is the process supervisor and should be launched first before to use other tools.

• gaffer is a Procfile application manager and allows you to load your Procfile applications in gafferd and watch
their status.

• gafferctl is a more generic tooll than gaffer and is more admin oriented. It allows you to setup any process
templates and manage your processes. You can also use it to watch the activity in gafferd (process activity or
general activity)

A process template is the way you describe the launch of an OS process, how many you want to launch on startup,
how many time you want to restart it in case of failures (flapping).... A process template can be loaded using any tool
or on gafferd startup using its configuration file.

Workflow

To use gaffer tools you need to:

1. First launch gafferd

2. use either gaffer or gafferctl to manage your processes

Launch gafferd

For more informations of gafferd go on its documentation page .

To launch gafferd run the following command line:

$ gafferd -c /path/to/gaffer.ini

If you want to launch custom plugins with gafferd you can also set the path to them:

$ gafferd -c /path/to/gaffer.ini -p /path/to/plugun

Note: default plugin path is relative to the user launching gaffer and is set to ~/.gaffer/plugins.

Note: To launch it in daemon mode use the --daemon option.

Then with the default configuration, you can check if gafferd is alive

2 Chapter 1. Gaffer

gaffer Documentation, Release

The configuration file

The configuration file can be used to set the global configuration of gafferd, setup some processes and webhooks.

Note: Since the configuration is passed to the plugin you can also use this configuration file to setup your plugins.

Here is a simple example of a config to launch the dumy process from the example folder:

[process:dummy]
cmd = ./dummy.py
numprocesses = 1
redirect_output = stdout, stderr

Note: Process can be grouped. You can then start and stop all processes of a group and see if a process is member of
a group using the HTTP api. (sadly this is not yet possible to do it using the command line).

For example if you want dummy be part of the group test, then [process:dummy] will become
[process:test:dummy] . A process template as you can see can only be part of one group.

Groups are useful when you want to manage a configuration for one application or processes / users.

Each process section should be prefixed by process:. Possible parameters are:

• cmd: the full command line to launch. eg. ./dummy.p¨

• args: arguments to pass as a string. eg. -some value --option=a

• cwd: path to working directorty

• uid: user name or id used to execute the process

• gid: group name or id used to execute the process

• detach: if you wnt to completely detach the process from gafferd (gaffer will still continue to supervise it)

• shell: The process is executed in a shell (unix only)

• flapping: flapping rule. eg. 2, 1., 7., 5 which means attempts=2, window=1., retry_in=7., max_retry=5

• redirect_input: to allows you to interract with stdin

• redirect_output: to watch both stdout & stderr. output names can be whatever you cant. For example you. eg.
redirect_output = mystdout, mystderr stdout will be labelled mysdtout in this case.

• graceful_timeout: time to wait before definitely kill a process. By default 30s. When killing a process, gaffer
is first sending a SIGTERM signal then after a graceful timeout if the process hasn’t stopped by itself send a
SIGKILL signal. It allows you to handle the way your process will stop.

• os_env: true or false, to pass all operating system variables to the process environment.

• priority: Integer. Allows you to fix the order in which gafferd will start the processes. 0 is the highest priority.
By default all processes have the same order.

Sometimes you also want to pass a custom environnement to your process. This is done by creating a special configu-
ration section named env:processname. Each environmenets sections are prefixed by env:. For example to pass
a special PORT environment variable to dummy:

[env:dummy]
port = 80

All environment variables key are passed in uppercase to the process environment.

1.2. Contents: 3

gaffer Documentation, Release

Manage your Procfile applications

The gaffer command line tool is an interface to the gaffer HTTP api and include support for loading/unloading
Procfile applications, scaling them up and down,

It can also be used as a manager for Procfile-based applications similar to foreman but using the gaffer
framework. It is running your application directly using a Procfile or export it to a gafferd configuration file or
simply to a JSON file that you could send to gafferd using the HTTP api.

Example of use

For example using the following Procfile:

dummy: python -u dummy_basic.py
dummy1: python -u dummy_basic.py

You can launch all the programs in this procfile using the following command line:

$ gaffer start

Or load them on a gaffer node:

$ gaffer load

All processes in the Procfile will be then loaded to gafferd and started.

If you want to start a process with a specific environment file you can create a .env in he application folder (or use the
command line option to tell to gaffer which one to use). Each environmennt variables are passed by lines. Ex:

PORT=80

and then scale them up and down:

$ gaffer scale dummy=3 dummy1+2
Scaling dummy processes... done, now running 3
Scaling dummy1 processes... done, now running 3

4 Chapter 1. Gaffer

gaffer Documentation, Release

have a look on the gaffer page for more informations about the commands.

Control gafferd with gafferctl

gafferctl can be used to run any command listed below. For example, you can get a list of all processes templates:

$ gafferctl processes

You can simply add a process using the load command:

$ gafferctl load_process ../test.json
$ cat ../test.json | gafferctl load_process -
$ gafferctl load_process - < ../test.json

test.json can be:

{
"name": "somename",
"cmd": "cmd to execute":
"args": [],
"env": {}
"uid": int or "",
"gid": int or "",
"cwd": "working dir",
"detach: False,
"shell": False,
"os_env": False,
"numprocesses": 1

}

You can also add a process using the add command:

gafferctl add name inc

where name is the name of the process to create and inc the number of new OS processes to start.

To start a process run the following command:

1.2. Contents: 5

gaffer Documentation, Release

$ gafferctl start name

And stop it using the stop command.

To scale up a process use the add command. For example to increase the number of processes from 3:

$ gafferctl add name 3

To decrease the number of processes use the command stop/

The command watch allows you to watch changes n a local or remote gaffer node.

For more informations go on the gafferctl page.

Demo

1.2.2 Gaffer REST API Resources

Jobs

Jobs are the configurations that can be used to launch the processes in Gaffer.

Processes

API to handle directly launched OS processes.

Auth

Authenticate to gaffer to get an authorization key. See the ../../authenticate documentation.

6 Chapter 1. Gaffer

gaffer Documentation, Release

Keys

API to manage authorizations keys in a gaffer Node. The authorizations keys give certains rights to the users in gaffer.
You need to be a node admin to access to this api.

Users

Miscellaneous

GET /auth

make an HTTP BASIC Auth request to get an authorization key

Resource URL http://localhost:5000/auth

Parameters None

GET http://localhost:5000/auth

• 200: OK

• 401: Unauthorized

GET /jobs

Get the list of all jobs configurations loaded on this node. A job describe how a process can be launched on the
machine. Each jobs are prefixed by the session name: <session>.<jobname>.

Resource URL http://localhost:5000/jobs

Parameters None

GET http://localhost:5000/jobs

GET /<pid>

Get the information and status of an active process. The name is <sessionid>.<jobname> .

Resource URL http://localhost:5000/pid

Parameters None

GET http://localhost:5000/1

GET /pids

List all active processes.

1.2. Contents: 7

http://localhost:5000/auth
http://localhost:5000/jobs
http://localhost:5000/pid

gaffer Documentation, Release

Resource URL http://localhost:5000/pids

Parameters None

GET http://localhost:5000/pids

GET /sessions

Get the list of all resources loaded on this node. A resource is a collection of job configuration. It is generally
corresponding to the list of jobs needed for an application.

Resource URL http://localhost:5000/sessions

Parameters None

GET http://localhost:5000/sessions

GET /jobs/<sessionid>

Get all jobs from a session

Resource URL http://localhost:5000/jobs/sessionid

Parameters None

GET http://localhost:5000/jobs/procfile

GET /jobs/<sessionid>/<jobname>

Get a job configuration

Resource URL http://localhost:5000/jobs/sessionid/jobname

Parameters None

GET http://localhost:5000/jobs/procfile/dummy

A process configuration has the following parameters:

• name: name of the process

• cmd: program command, string)

• args: the arguments for the command to run. Can be a list or a string.

• env: a mapping containing the environment variables the command will run with. Optional

• uid: int or str, user id

• gid: int or st, user group id,

• cwd: working dir

8 Chapter 1. Gaffer

http://localhost:5000/pids
http://localhost:5000/sessions
http://localhost:5000/jobs/sessionid
http://localhost:5000/jobs/sessionid/jobname

gaffer Documentation, Release

• detach: the process is launched but won’t be monitored and won’t exit when the manager is stopped.

• shell: boolean, run the script in a shell. (UNIX only)

• redirect_output: list of io to redict (max 2) this is a list of custom labels to use for the redirection. Ex: [”a”,
“b”] will redirect stdoutt & stderr and stdout events will be labeled “a”

• redirect_input: Boolean (False is the default). Set it if you want to be able to write to stdin.

• custom_streams: list of additional streams that should be created and passed to process. This is a list of streams
labels. They become available through streams attribute.

• custom_channels: list of additional channels that have been passed to process.

GET /jobs/<sessionid>/<jobname>/numprocesses

Get the number of processes thta should be kept alive for a job configuration.

Resource URL http://localhost:5000/jobs/sessionid/jobname/numprocesses

Parameters None

GET http://localhost:5000/jobs/procfile/dummy/numprocesses

GET /jobs/<sessionid>/<jobname>/pids

Get all processes IDs running for a job configuration.

Resource URL http://localhost:5000/jobs/sessionid/jobname/pids

Parameters None

GET http://localhost:5000/jobs/procfile/dummy/pids

GET /jobs/<sessionid>/<jobname>/state

Get the status of a job configuration:

• 0: stopped

• 1: started

Resource URL http://localhost:5000/jobs/sessionid/jobname/state

Parameters None

GET http://localhost:5000/jobs/procfile/dummy/state

GET /jobs/<sessionid>/<jobname>/stats

Get statistics of all processes for a job configuration.

1.2. Contents: 9

http://localhost:5000/jobs/sessionid/jobname/numprocesses
http://localhost:5000/jobs/sessionid/jobname/pids
http://localhost:5000/jobs/sessionid/jobname/state

gaffer Documentation, Release

Resource URL http://localhost:5000/jobs/sessionid/jobname

Parameters None

GET http://localhost:5000/jobs/procfile/dummy/stats

GET /<pid>/stats

Get the current statistics for a process.

Resource URL http://localhost:5000/pid/stats

Parameters None

GET http://localhost:5000/1/stats

POST /jobs/<sessionid>

Load a job configuration.

Resource URL http://localhost:5000/jobs/session

Parameters None

POST http://localhost:5000/jobs/test

A process configuration has the following parameters:

• name: name of the process

• cmd: program command, string)

• args: the arguments for the command to run. Can be a list or a string.

• env: a mapping containing the environment variables the command will run with. Optional

• uid: int or str, user id

• gid: int or st, user group id,

• cwd: working dir

• detach: the process is launched but won’t be monitored and won’t exit when the manager is stopped.

• shell: boolean, run the script in a shell. (UNIX only)

• redirect_output: list of io to redict (max 2) this is a list of custom labels to use for the redirection. Ex: [”a”,
“b”] will redirect stdoutt & stderr and stdout events will be labeled “a”

• redirect_input: Boolean (False is the default). Set it if you want to be able to write to stdin.

• custom_streams: list of additional streams that should be created and passed to process. This is a list of streams
labels. They become available through streams attribute.

• custom_channels: list of additional channels that have been passed to process.

10 Chapter 1. Gaffer

http://localhost:5000/jobs/sessionid/jobname
http://localhost:5000/pid/stats
http://localhost:5000/jobs/session

gaffer Documentation, Release

POST /jobs/<sessionid>/<jobname>/commit

Send a one-off command to gaffer using a job configuration. Commited jobs aren’t supervised, they will run until they
die but won’t be restarted. You can pass to the command a different environment and the graceful timeout. It return
the ID of the process launched.

Resource URL http://localhost:5000/jobs/session/job/commit

Parameters None

POST http://localhost:5000/jobs/test/dummy/commit

POST /jobs/<sessionid>/<jobname>/numprocesses

Scale the number of processes launched for a job configuration. Values can be:

• +N: increase the number of processes from N

• -N: decrease the number of processes fron N

• =N: set the number of processes to N

Resource URL http://localhost:5000/jobs/session?job/numprocesses

Parameters None

POST http://localhost:5000/jobs/test/dummy/numprocesses

POST /jobs/<sessionid>/<jobname>/signal

Send a signal to all processes related to this job configuration.

POSIX signal number (man signal or kill for more information):

No Name Default Action Description
1 SIGHUP terminate process terminal line hangup
2 SIGINT terminate process interrupt program
3 SIGQUIT create core image quit program
4 SIGILL create core image illegal instruction
5 SIGTRAP create core image trace trap
6 SIGABRT create core image abort program (formerly SIGIOT)
7 SIGEMT create core image emulate instruction executed
8 SIGFPE create core image floating-point exception
9 SIGKILL terminate process kill program
10 SIGBUS create core image bus error
11 SIGSEGV create core image segmentation violation
12 SIGSYS create core image non-existent system call invoked
13 SIGPIPE terminate process write on a pipe with no reader
14 SIGALRM terminate process real-time timer expired
15 SIGTERM terminate process software termination signal
16 SIGURG discard signal urgent condition present on socket
17 SIGSTOP stop process stop (cannot be caught or ignored)
18 SIGTSTP stop process stop signal generated from keyboard
19 SIGCONT discard signal continue after stop

1.2. Contents: 11

http://localhost:5000/jobs/session/job/commit
http://localhost:5000/jobs/session?job/numprocesses

gaffer Documentation, Release

20 SIGCHLD discard signal child status has changed
21 SIGTTIN stop process background read attempted from control terminal
22 SIGTTOU stop process background write attempted to control terminal
23 SIGIO discard signal I/O is possible on a descriptor (see fcntl(2))
24 SIGXCPU terminate process cpu time limit exceeded (see setrlimit(2))
25 SIGXFSZ terminate process file size limit exceeded (see setrlimit(2))
26 SIGVTALRM terminate process virtual time alarm (see setitimer(2))
27 SIGPROF terminate process profiling timer alarm (see setitimer(2))
28 SIGWINCH discard signal Window size change
29 SIGINFO discard signal status request from keyboard
30 SIGUSR1 terminate process User defined signal 1
31 SIGUSR2 terminate process User defined signal 2

Resource URL http://localhost:5000/jobs/session/job/signal

Parameters None

POST http://localhost:5000/jobs/test/dummy/signal

POST /jobs/<sessionid>/<jobname>/state

Start, Stop or Reload all processes in a job configuration

• 0: stop

• 1: start

• 2: reload

Resource URL http://localhost:5000/jobs/session/job/state

Parameters None

POST http://localhost:5000/jobs/test/dummy/state

POST /<pid>/signal

Send a signal to a process.

POSIX signal number (man signal or kill for more information):

No Name Default Action Description
1 SIGHUP terminate process terminal line hangup
2 SIGINT terminate process interrupt program
3 SIGQUIT create core image quit program
4 SIGILL create core image illegal instruction
5 SIGTRAP create core image trace trap
6 SIGABRT create core image abort program (formerly SIGIOT)
7 SIGEMT create core image emulate instruction executed
8 SIGFPE create core image floating-point exception
9 SIGKILL terminate process kill program
10 SIGBUS create core image bus error
11 SIGSEGV create core image segmentation violation
12 SIGSYS create core image non-existent system call invoked

12 Chapter 1. Gaffer

http://localhost:5000/jobs/session/job/signal
http://localhost:5000/jobs/session/job/state

gaffer Documentation, Release

13 SIGPIPE terminate process write on a pipe with no reader
14 SIGALRM terminate process real-time timer expired
15 SIGTERM terminate process software termination signal
16 SIGURG discard signal urgent condition present on socket
17 SIGSTOP stop process stop (cannot be caught or ignored)
18 SIGTSTP stop process stop signal generated from keyboard
19 SIGCONT discard signal continue after stop
20 SIGCHLD discard signal child status has changed
21 SIGTTIN stop process background read attempted from control terminal
22 SIGTTOU stop process background write attempted to control terminal
23 SIGIO discard signal I/O is possible on a descriptor (see fcntl(2))
24 SIGXCPU terminate process cpu time limit exceeded (see setrlimit(2))
25 SIGXFSZ terminate process file size limit exceeded (see setrlimit(2))
26 SIGVTALRM terminate process virtual time alarm (see setitimer(2))
27 SIGPROF terminate process profiling timer alarm (see setitimer(2))
28 SIGWINCH discard signal Window size change
29 SIGINFO discard signal status request from keyboard
30 SIGUSR1 terminate process User defined signal 1
31 SIGUSR2 terminate process User defined signal 2

Resource URL http://localhost:5000/pid/signal

Parameters None

POST http://localhost:5000/1/signal

PUT /jobs/<sessionid>/<jobname>

Update a job configuration and relaunch processes

Resource URL http://localhost:5000/jobs/session/job

Parameters None

PUT http://localhost:5000/jobs/test/dummy

A process configuration has the following parameters:

• name: name of the process

• cmd: program command, string)

• args: the arguments for the command to run. Can be a list or a string.

• env: a mapping containing the environment variables the command will run with. Optional

• uid: int or str, user id

• gid: int or st, user group id,

• cwd: working dir

• detach: the process is launched but won’t be monitored and won’t exit when the manager is stopped.

• shell: boolean, run the script in a shell. (UNIX only)

• redirect_output: list of io to redict (max 2) this is a list of custom labels to use for the redirection. Ex: [”a”,
“b”] will redirect stdoutt & stderr and stdout events will be labeled “a”

1.2. Contents: 13

http://localhost:5000/pid/signal
http://localhost:5000/jobs/session/job

gaffer Documentation, Release

• redirect_input: Boolean (False is the default). Set it if you want to be able to write to stdin.

• custom_streams: list of additional streams that should be created and passed to process. This is a list of streams
labels. They become available through streams attribute.

• custom_channels: list of additional channels that have been passed to process.

DELETE /<pid>

Stop a process.

Resource URL http://localhost:5000/pid

Parameters None

DELETE http://localhost:5000/1

DElETE /jobs/<sessionid>/<jobname>

Unload a job configuration and stop all related processes

Resource URL http://localhost:5000/jobs/session/job

Parameters None

DELETE http://localhost:5000/jobs/test/dummy

14 Chapter 1. Gaffer

http://localhost:5000/pid
http://localhost:5000/jobs/session/job

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

15

	Gaffer
	Features
	Contents:

	Indices and tables

