

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	gaffer documentation

Welcome to gaffer’s documentation!

Gaffer

Application deployement, monitoring and supervision made simple.

Gaffer is a set of Python modules and tools to easily maintain and
interact with your applications.

 Getting started

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

Getting started

This tutorial exposes the usage of gaffer as a tool. For a general
overview or how to integrate it in your application you should read the
overview page.

Introduction

Gaffer allows you to launch OS processes and supervise them. 3
command line tools allows you to use it for now:

	Gafferd is the process supervisor and should be launched first
before to use other tools.

	Gaffer is a Procfile application manager and allows you to
load your Procfile applications in gafferd and watch their status.

	Gafferctl is a more generic tooll than gaffer and is more admin
oriented. It allows you to setup any process templates and manage your
processes. You can also use it to watch the activity in gafferd
(process activity or general activity)

A process template is the way you describe the launch of an OS process,
how many you want to launch on startup, how many time you want to
restart it in case of failures (flapping).... A process template can be
loaded using any tool or on gafferd startup using its configuration
file.

Workflow

To use gaffer tools you need to:

	First launch gafferd

	use either gaffer or gafferctl to manage your processes

Launch gafferd

For more informations of gafferd go on its documentation page .

To launch gafferd run the following command line:

$ gafferd -c /path/to/gaffer.ini

If you want to launch custom plugins with
gafferd you can also set the path to them:

$ gafferd -c /path/to/gaffer.ini -p /path/to/plugun

Note

default plugin path is relative to the user launching gaffer and is
set to ~/.gaffer/plugins.

Note

To launch it in daemon mode use the --daemon option.

Then with the default configuration, you can check if gafferd is alive

The configuration file

The configuration file can be used to set the global configuration of
gafferd, setup some processes and webhooks.

Note

Since the configuration is passed to the plugin you can also use
this configuration file to setup your plugins.

Here is a simple example of a config to launch the dumy process from the
example folder:

[process:dummy]
cmd = ./dummy.py
numprocesses = 1
redirect_output = stdout, stderr

Note

Process can be grouped. You can then start and stop all processes of
a group and see if a process is member of a group using the HTTP
api. (sadly this is not yet possible to do it using the command
line).

For example if you want dummy be part of the group test, then
[process:dummy] will become [process:test:dummy] . A process
template as you can see can only be part of one group.

Groups are useful when you want to manage a configuration for one
application or processes / users.

Each process section should be prefixed by process:. Possible
parameters are:

	cmd: the full command line to launch. eg. ./dummy.p¨

	args: arguments to pass as a string. eg. -some value --option=a

	cwd: path to working directorty

	uid: user name or id used to execute the process

	gid: group name or id used to execute the process

	detach: if you wnt to completely detach the process from gafferd
(gaffer will still continue to supervise it)

	shell: The process is executed in a shell (unix only)

	flapping: flapping rule. eg. 2, 1., 7., 5 which means
attempts=2, window=1., retry_in=7., max_retry=5

	redirect_input: to allows you to interract with stdin

	redirect_output: to watch both stdout & stderr. output names can
be whatever you cant. For example you. eg. redirect_output =
mystdout, mystderr stdout will be labelled mysdtout in this
case.

	graceful_timeout: time to wait before definitely kill a process.
By default 30s. When killing a process, gaffer is first sending a
SIGTERM signal then after a graceful timeout if the process hasn’t
stopped by itself send a SIGKILL signal. It allows you to handle
the way your process will stop.

	os_env: true or false, to pass all operating system variables to
the process environment.

	priority: Integer. Allows you to fix the order in which gafferd
will start the processes. 0 is the highest priority. By default all
processes have the same order.

Sometimes you also want to pass a custom environnement to your process.
This is done by creating a special configuration section named
env:processname. Each environmenets sections are prefixed by
env:. For example to pass a special PORT environment variable to
dummy:

[env:dummy]
port = 80

All environment variables key are passed in uppercase to the process
environment.

Manage your Procfile applications

The gaffer command line tool is an interface to the gaffer
HTTP api and include support for loading/unloading Procfile
applications, scaling them up and down,

It can also be used as a manager for Procfile-based applications similar to
foreman but using the gaffer framework. It is
running your application directly using a Procfile or export it to a
gafferd configuration file or simply to a JSON file that you could send
to gafferd using the HTTP api.

Example of use

For example using the following Procfile:

dummy: python -u dummy_basic.py
dummy1: python -u dummy_basic.py

You can launch all the programs in this procfile using the following
command line:

$ gaffer start

[image: _images/gafferp.png]
Or load them on a gaffer node:

$ gaffer load

All processes in the Procfile will be then loaded to gafferd and
started.

If you want to start a process with a specific environment file you can
create a .env in he application folder (or use the command line option to tell to
gaffer which one to use). Each environmennt variables are passed by
lines. Ex:

PORT=80

and then scale them up and down:

$ gaffer scale dummy=3 dummy1+2
Scaling dummy processes... done, now running 3
Scaling dummy1 processes... done, now running 3

[image: _images/gaffer_ps.png]
have a look on the Gaffer page for more informations about the
commands.

Control gafferd with gafferctl

gafferctl can be used to run any command listed below. For
example, you can get a list of all processes templates:

$ gafferctl processes

You can simply add a process using the load command:

$ gafferctl load_process ../test.json
$ cat ../test.json | gafferctl load_process -
$ gafferctl load_process - < ../test.json

test.json can be:

{
 "name": "somename",
 "cmd": "cmd to execute":
 "args": [],
 "env": {}
 "uid": int or "",
 "gid": int or "",
 "cwd": "working dir",
 "detach: False,
 "shell": False,
 "os_env": False,
 "numprocesses": 1
}

You can also add a process using the add command:

gafferctl add name inc

where name is the name of the process to create and inc the
number of new OS processes to start.

To start a process run the following command:

$ gafferctl start name

And stop it using the stop command.

To scale up a process use the add command. For example to increase
the number of processes from 3:

$ gafferctl add name 3

To decrease the number of processes use the command stop/

The command watch allows you to watch changes n a local or remote
gaffer node.

[image: _images/gaffer_watch1.png]
For more informations go on the Gafferctl page.

Demo

 Overview

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

Overview

Gaffer is a set of Python modules and tools to easily maintain and
interact with your processes.

Depending on your needs you ca simply use the gaffer tools (eventually
extend them) or embed the gaffer possibilities in your own apps.

Design

Gaffer is internally based on an event loop using the libuv [https://github.com/joyent/libuv/] from Joyent via the pyuv binding [https://pyuv.readthedocs.org]

All gaffer events are added to the loop and processes asynchronously wich
make it pretty performant to handle multiple process and their control.

At the lowest level you will find the manager. A manager is responsible
of maintaining process alive and manage actions on them:

	increase/decrease the number of processes / process template

	start/stop processes

	add/remove process templates to manage

A process template describe the way a process will be launched and how
many OS processes you want to handle for this template. This number can
be changed dynamically. Current properties of this templates are:

	name: name of the process

	cmd: program command, string)

	args: the arguments for the command to run. Can be a list or
a string. If args is a string, it’s splitted using
shlex.split(). Defaults to None.

	env: a mapping containing the environment variables the command
will run with. Optional

	uid: int or str, user id

	gid: int or st, user group id,

	cwd: working dir

	detach: the process is launched but won’t be monitored and
won’t exit when the manager is stopped.

	shell: boolean, run the script in a shell. (UNIX
only),

	os_env: boolean, pass the os environment to the program

	numprocesses: int the number of OS processes to launch for
this description

	flapping: a FlappingInfo instance or, if flapping detection
should be used. flapping parameters are:
	attempts: maximum number of attempts before we stop the
process and set it to retry later

	window: period in which we are testing the number of
retry

	retry_in: seconds, the time after we restart the process
and try to spawn them

	max_retry: maximum number of retry before we give up
and stop the process.

	redirect_output: list of io to redict (max 2) this is a list of custom
labels to use for the redirection. Ex: [“a”, “b”]will
redirect stdoutt & stderr and stdout events will be labeled “a”

	redirect_input: Boolean (False is the default). Set it if
you want to be able to write to stdin.

The manager is also responsible of starting and stopping gaffer
applications that you add to he manager to react on different events. A applicaton can
fetch informations from the manager and interract with him.

Running an application is done like this:

initialize the controller with the default loop
loop = pyuv.Loop.default_loop()
manager = Manager(loop=loop)

start the controller
manager.start(applications=[HttpHandler()])

.... # do smth

manager.stop() # stop the controlller
manager.run() # run the event loop

The HttpHandler application allows you to interact with gaffer via
HTTP. It is used by the gafferd server which is able for now to load
process templates via an ini files and maintain an HTTP endpoint which
can be configured to be accessible on multiples interfaces and
transports (tcp & unix sockets) .

Note

Only applications instances are used by the manager. It allows you
to initialize them with your own settings.

Building your own application is easy, basically an application has the
following structure:

class MyApplication(object):

 def __init__(self):
 # do inti

 def start(self, loop, manager):
 # this method is call by the manager to start the controller

 def stop(self):
 # method called when the manager stop

 def restart(self):
 # methhod called when the manager restart

You can use this structure for anything you want, even add an app to the
loop.

To help you in your work a pyuv implementation of
tornado is integrated and a powerfull events modules
will allows you to manage PUB/SUB events (or anything evented) inside
your app. An EventEmitter is a threadsafe class to manage subscriber and
publisher of events. It is internally used to broadcast processes and
manager events.

Watch stats

Stats of a process ca, be monitored continuously (there is a refresh
interval of 0.1s to fetch CPU informations) using the following
mettod:

manager.monitor(<nameorid>, <listener>)

Where <nameorid> is the name of the process template. In this case
the statistics of all the the OS processes using this template will be
emitted. Stats events are collected in the listener callback.

Callback signature: callback(evtype, msg).

evtype is always “STATS” here and msg is a dict:

{
 "mem_info1: int,
 "mem_info2: int,
 "cpu": int,
 "mem": int,
 "ctime": int,
 "pid": int,
 "username": str,
 "nicce": int,
 "cmdline": str,
 "children": [{ stat dict, ... }]
}

To unmonitor the process in your app run:

manager.unmonitor(<nameorid>, <listener>)

Note

Internally a monitor subscribe you to an EventEmitter. A timer is
running until there are subscribers to the process stats events.

Of course you can monitor directly to a process using the internal pid:

process = manager.running[pid]
process.monitor(<listener>)

...

process.unmonitor(<listener>)

IO Events

Subscribe to stdout/stderr process stream

You can subscribe to stdout/stderr process stream and even write to
stdin if you want.

To be able to receive the stdour/stderr streams in your application,
you need to create a process with the redirect_output setting:

manager.add_process("nameofprocestemplate", cmd,
 redirect_output["stdout", "stderr"])

Note

Name of outputs can be anything, only the order count so if you want
to name stdout as a just replace stdout by a in the
declaration.

If you don’t want to receive stderr, just omit it in the list.
Alos if you want to redirect stderr to stdout just use the same
name.

Then for example, to monitor the stdout output do:

process.monitor_io("stdout", somecallback)

Callback signature: callback(evtype, msg).

And to unmonitor:

process.unmonitor_io("stdout", somecallback)

Note

To subscribe to all process streams replace the stream name by
‘.’` .

Write to STDIN

Writing to stdin is pretty easy. Just do:

process.write("somedata")

or to send multiple lines:

process.writelines(["line", "line"])

You can write lines from multiple publisher and multiple publishers can
write at the same time. This method is threadsafe.

HTTP API

See the HTTP api description for more informations.

Tools

Gaffer proposes different tools (and more will come soon) to manage your
process without having to code. It can be used like supervisor [http://supervisord.org/], god [http://godrb.com/], runit [http://smarden.org/runit/] or other tools around. Speaking of runit
a similar controlling will be available in 0.2 .

See the Command Line documentation for more informations.

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 CHANGES

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

CHANGES

2012/12/20 - version 0.4.4

	improve Events dispatching

	add support for multiple channel in a process

	add ping handler for monitoring

	some fixes in the http api

	fix stop_processes function

2012/11/02 - version 0.4.3

	process os environment now inherits from the gafferd environment

	fix autorestart feature: now handled asynchronously which allows us to
still handle “stop command when a process fails”

2012/11/01 - version 0.4.2

	fix os_env option

2012/10/29 - version 0.4.0

	add environent variables support in the gafferd setting file.

	add a plugin system to easily extend Gafferd using HTML sites
or gaffer applications in Python

2012/10/18 - version 0.3.1

	add environment variables substitution in the process command line and
arguments.

2012/10/18 - version 0.3.0

	add the Gaffer command line tool: load, unload your procfile
applications to gaffer, scale them up and down. Or just use it as a
procfile manager just like foreman [https://github.com/ddollar/foreman] .

	add gafferctl Watch changes in gaffer command to watch a node activity
remotely.

	add priority feature: now processes can be launch in order

	add the possibility to manipulate groups of processes [https://github.com/benoitc/gaffer/commit/05951328e5f80017cf23f0a9721347da67049224]

	add the possibility to set the default endpoint in gafferd from the
command line

	add -v and --vv options to gafferd to have a verbose output.

	add an eventsource client in the framework to manipulate gaffer
streams.

	add Manager.start_processes method. Start all processes.

	add console_output application to the framework

	add new global Gaffer events to the manager: spawn, reap, stop_pid,
exit.

	fix shutdown

	fix heartbeat

2012/10/15 - version 0.2.0

	add Webhooks: post to an url when a gaffer event is triggered

	add graceful shutdown. kill processes after a graceful time

	add Load a process from a file command

	code refactoring: make the code simpler

2012/10/12 - version 0.1.0

Initial release

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Command Line

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

Command Line

Gaffer is a process management framework but
also a set of command lines tools allowing yout to manage on your
machine or a cluster. All the command line tools are obviously using the
framework.

gaffer`is an interface to the :doc:`gaffer HTTP api and
inclusde support for loading/unloadin apps, scaling them up and down,
... . It can also be used as a manager for Procfile-based applications
similar to foreman but using the gaffer framework. It is running your application directly using a
Procfile or export it to a gafferd configuration file or simply to a
JSON file that you could send to gafferd using the HTTP api.

Gafferd is a server able to launch and manage processes. It
can be controlled via the HTTP api. It is controlled by gafferctl and
can be used to handle many processes.

The tool Gafferctl allows you to control a local or remote gafferd
node via the HTTP API. You can show processes informations, add new
processes, changes their configureation, get changes on the nodes in rt
....

	Gaffer

	Gafferd

	Gafferctl

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Gaffer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Command Line

Gaffer

The gaffer command line tool is an interface to the gaffer
HTTP api and include support for loading/unloading Procfile
applications, scaling them up and down,

It can also be used as a manager for Procfile-based applications similar to
foreman but using the gaffer framework. It is
running your application directly using a Procfile or export it to a
gafferd configuration file or simply to a JSON file that you could send
to gafferd using the HTTP api.

Example of use

For example using the following Procfile:

dummy: python -u dummy_basic.py
dummy1: python -u dummy_basic.py

You can launch all the programs in this procfile using the following
command line:

$ gaffer start

[image: _images/gafferp.png]
Or load them on a gaffer node:

$ gaffer load

and then scale them up and down:

$ gaffer scale dummy=3 dummy1+2
Scaling dummy processes... done, now running 3
Scaling dummy1 processes... done, now running 3

[image: _images/gaffer_ps.png]

gaffer commands

	start: Start a process

	run: Run one-off command

	export: Export a Procfile

	load: Load a Procfile application to gafferd

	unload: Unload a Procfile application to gafferd

	scale: Scaling your process

	ps: List your process informations

Command line usage

$ gaffer
usage: gaffer [options] command [args]

manage Procfiles applications.

optional arguments:
 -h, --help show this help message and exit
 -c CONCURRENCY, --concurrency CONCURRENCY
 Specify the number of each process type to run. The
 value passed in should be in the format
 process=num,process=num
 -e ENVS [ENVS ...], --env ENVS [ENVS ...]
 Specify one or more .env files to load
 -f FILE, --procfile FILE
 Specify an alternate Procfile to load
 -d ROOT, --directory ROOT
 Specify an alternate application root. This defaults
 to the directory containing the Procfile
 --endpoint ENDPOINT Gaffer node URL to connect
 --version show program's version number and exit

Commands:

 start Start a process
 run Run one-off command
 export Export a Procfile
 load Load a Procfile application to gafferd
 unload Unload a Procfile application to gafferd
 scale Scaling your process
 ps List your process informations
 help Get help on a command

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Gafferd

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Command Line

Gafferd

Gafferd is a server able to launch and manage processes. It can be
controlled via the HTTP api .

Usage

$ gafferd -h
usage: gafferd [-h] [-c CONFIG_FILE] [-p PLUGINS_DIR] [-v] [-vv] [--daemon]
 [--pidfile PIDFILE] [--bind BIND] [--certfile CERTFILE]
 [--keyfile KEYFILE] [--backlog BACKLOG]
 [config]

Run some watchers.

positional arguments:
 config configuration file

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG_FILE, --config CONFIG_FILE
 configuration file
 -p PLUGINS_DIR, --plugins-dir PLUGINS_DIR
 default plugin dir
 -v verbose mode
 -vv like verbose mode but output stream too
 --daemon Start gaffer in the background
 --pidfile PIDFILE
 --bind BIND default HTTP binding
 --certfile CERTFILE SSL certificate file for the default binding
 --keyfile KEYFILE SSL key file for the default binding
 --backlog BACKLOG default backlog

Config file example

[gaffer]
http_endpoints = public

[endpoint:public]
bind = 127.0.0.1:5000
;certfile=
;keyfile=

[webhooks]
;create = http://some/url
;proc.dummy.spawn = http://some/otherurl

[process:dummy]
cmd = ./dummy.py
;cwd = .
;uid =
;gid =
;detach = false
;shell = false
; flapping format: attempts=2, window=1., retry_in=7., max_retry=5
;flapping = 2, 1., 7., 5
numprocesses = 1
redirect_output = stdout, stderr
; redirect_input = true
; graceful_timeout = 30

[process:echo]
cmd = ./echo.py
numprocesses = 1
redirect_output = stdout, stderr
redirect_input = true

Plugins

Plugins are a way to enhance the basic gafferd functionality in a custom manner.
Plugins allows you to load any gaffer application and site plugins. You
can for example use the plugin system to add a simple UI to administrate
gaffer using the HTTP interface.

A plugin has the following structure:

/pluginname
 _site/
 plugin/
 __init__.py
 ...
 ***.py

A plugin can be discovered by adding one ore more module that expose a
class inheriting from gaffer.Plugin. Every plugin file should have a
__all__ attribute containing the implemented plugin class. Ex:

from gaffer import Plugin

__all__ = ['DummyPlugin']

from .app import DummyApp

class DummyPlugin(Plugin):
 name = "dummy"
 version = "1.0"
 description = "test"

 def app(self, cfg):
 return DummyApp()

The dummy app here only print some info when started or stopped:

class DummyApp(object):

 def start(self, loop, manager):
 print("start dummy app")

 def stop(sef):
 print("stop dummy")

 def rester(self):
 print("restart dummy")

See the Overview for more infos. You can try it in the example
folder:

$ cd examples
$ gafferd -c gaffer.ini -p plugins/

Install plugins

Installing plugins can be done by placing the plugin in the plugin
folder. The plugin folder is either set in the setting file using the
plugin_dir in the gaffer section or using the -p option of the
command line.

The default plugin dir is set to ~/.gafferd/plugins .

Site plugins

Plugins can have “sites” in them, any plugin that exists under the
plugins directory with a _site directory, its content will be statically
served when hitting /_plugin/[plugin_name]/ url. Those can be added even
after the process has started.

Installed plugins that do not contain any Python related content, will
automatically be detected as site plugins, and their content will be
moved under _site.

Mandatory Plugins

If you rely on some plugins, you can define mandatory plugins using the
mandatory attribute of a the plugin class, for example, here is a
sample config:

class DummyPlugin(Plugin):
 ...
 mandatory = ['somedep']

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Gafferctl

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Command Line

Gafferctl

gafferctl can be used to run any command listed below. For
example, you can get a list of all processes templates:

$ gafferctl processes

gafferctl is an HTTP client able to connect to a UNIX pipe or a tcp
connection and connect to a gaffer node. It is using the httpclient
module to do it.

You can create your own client either by using the client API provided
in the httpclient module or by reading the doc here and passing your own
message to the gaffer node. All messages are encoded in JSON.

[image: _images/gaffer_watch1.png]

Usage

$ gafferctl help
usage: gafferctl [--version] [--connect=<endpoint>]
 [--certfile] [--keyfile]
 [--help]
 <command> [<args>]

Commands:
 add Increment the number of OS processes
 add_process Add a process to monitor
 del_process Get a process description
 get_process Fetch a process template
 help Get help on a command
 kill Send a signal to a process
 load_process Load a process from a file
 numprocesses Number of processes that should be launched
 pids Get launched process ids for a process template
 processes Add a process to monitor
 running Number of running processes for this process description
 start Start a process
 status Return the status of a process
 stop Stop a process
 sub Decrement the number of OS processes
 update_process Update a process description

gafferctl commands

	status: Return the status of a process

	processes: Add a process to monitor

	sub: Decrement the number of OS processes

	add_process: Add a process to monitor

	get_process: Fetch a process template

	stop: Stop a process

	running: Number of running processes for this process description

	load_process: Load a process from a file

	watch: Watch changes in gaffer

	start: Start a process

	add: Increment the number of OS processes

	update_process: Update a process description

	kill: Send a signal to a process

	numprocesses: Number of processes that should be launched

	del_process: Get a process description

	pids: Get launched process ids for a process template

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 HTTP api

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

HTTP api

an http API provided by the gaffer.http_handler.HttpHandler`
gaffer application can be used to control gaffer via HTTP. To embed it in your
app just initialize your manager with it:

manager = Manager(apps=[HttpHandler()])

The HttpHandler can be configured to accept multiple endpoinds and can
be extended with new HTTP handlers. Internally we are using Tornado so
you can either extend it with rules using pure totrnado handlers or wsgi
apps.

Request Format and Responses

Gaffer supports GET, POST, PUT, DELETE, OPTIONS HTTP
verbs.

All messages (except some streams) are JSON encoded. All messages sent
to gaffers should be json encoded.

Gaffer supports cross-origin resource sharing (aka CORS).

HTTP endpoints

Main http endpoints are described in the description of the gafferctl
commands in Gafferctl:

Gafferctl is using extensively this HTTP api.

Output streams

The output streams can be fetched by doing:

GET /streams/<pid>/<nameofeed>

It accepts the following query parameters:

	feed : continuous, longpoll, eventsource

	heartbeat: true or seconds, send an empty line each sec (if true
60)

ex:

$ curl localhost:5000/streams/1/stderr?feed=continuous
STDERR 12
STDERR 13
STDERR 14
STDERR 15
STDERR 16
STDERR 17
STDERR 18
STDERR 19
STDERR 20
STDERR 21
STDERR 22
STDERR 23
STDERR 24
STDERR 25
STDERR 26
STDERR 27
STDERR 28
STDERR 29
STDERR 30
STDERR 31

$ curl localhost:5000/streams/1/stderr?feed=longpoll
STDERR 215

$ curl localhost:5000/streams/1/stderr?feed=eventsource
event: stderr
data: STDERR 20

event: stderr
data: STDERR 21

event: stderr
data: STDERR 22

$ curl localhost:5000/streams/1/stdout?feed=longpoll
STDOUTi 14

Write to STDIN

It is now possible to write to stdin via the HTTP api by sending:

POST to /streams/<pid>/ttin

Where <pid> is an internal process ide that you can retrieve by
calling GET /processses/<name>/_pids

ex:

$ curl -XPOST -d $'ECHO\n' localhost:5000/streams/2/stdin
{"ok": true}

$ curl localhost:5000/streams/2/stdout?feed=longpoll
ECHO

Websocket stream for STDIN/STDOUT

It is now possible to get stin/stdout via a websocket. Writing to
ws://HOST:PORT/wstreams/<pid> will send the data to stdin any
information written on stdout will be then sent back to the websocket.

See the echo client/server example in the example folder:

$ python echo_client.py
Sent
Reeiving...
Received 'ECHO

'
(test)enlil:examples benoitc$ python echo_client.py
Sent
Reeiving...
Received 'ECHO

Note

unfortunately the echo_client script can only be launched with
python 2.7 :/

Note

to redirect stderr to stdout just use the same name when you setting
the redirect_output property on process creation.

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Webhooks

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

Webhooks

Webhooks allow to register an url to a specific event (or alls) and the
event will be posted on this URL. Each events can triger a post on a
given url.

for example to listen all create events on http://echohttp.com/echo you
can add this line in the webhooks sections of the gaffer setting file:

[webhooks]
create = http://echohttp.com/echo you

Or programatically:

from gaffer.manager import Manager
from gaffer.webhooks import WebHooks
hooks = [("create", "http://echohttp.com/echo you ")
webhooks = WebHooks(hooks=hooks)

manager = Manager()
manager.start(apps=[webhooks])

This gaffer application is started like other applications in the
manager. All Gaffer events are supported.

The webhooks Module

	
class gaffer.webhooks.WebHooks(hooks=[])[source]

	Bases: object

webhook app

	
active[source]

	

	
close()[source]

	

	
decref()[source]

	

	
incref()[source]

	

	
jobcount[source]

	

	
maybe_start_monitor()[source]

	

	
maybe_stop_monitor()[source]

	

	
refcount[source]

	

	
register_hook(event, url)[source]

	associate an url to an event

	
restart()[source]

	

	
start(loop, manager)[source]

	start the webhook app

	
stop()[source]

	stop the webhook app, stop monitoring to events

	
unregister_hook(event, url)[source]

	unregister an url for this event

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Core gaffer framework

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

Core gaffer framework

	manager Module
	Classes

	process Module

	Gaffer events
	Manager events

	Processes events

	The events Module

	Classes

	Webhooks
	The webhooks Module

	procfile Module

	pidfile Module

	util Module

	tornado_pyuv Module

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 manager Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

manager Module

The manager module is a core component of gaffer. A Manager is
responsible of maintaining processes and allows you to interract with
them.

Classes

	
class gaffer.manager.Manager(loop=None)[source]

	Bases: object

Manager - maintain process alive

A manager is responsible of maintaining process alive and manage
actions on them:

	increase/decrease the number of processes / process template

	start/stop processes

	add/remove process templates to manage

The design is pretty simple. The manager is running on the default
event loop and listening on events. Events are sent when a process
exit or from any method call. The control of a manager can be
extended by adding apps on startup. For example gaffer
provides an application allowing you to control processes via HTTP.

Running an application is done like this:

initialize the application with the default loop
loop = pyuv.Loop.default_loop()
m = Manager(loop=loop)

start the application
m.start(apps=[HttpHandler])

.... # do smth

m.stop() # stop the controlller
m.run() # run the event loop

Note

The loop can be omitted if the first thing you do is
launching a manager. The run function is here for convenience. You
can of course just run loop.run() instead

Warning

The manager should be stopped the last one to prevent any lock
in your application.

	
add_process(name, cmd, **kwargs)[source]

	add a process to the manager. all process should be added
using this function

	name: name of the process

	cmd: program command, string)

	args: the arguments for the command to run. Can be a list or
a string. If args is a string, it’s splitted using
shlex.split(). Defaults to None.

	env: a mapping containing the environment variables the command
will run with. Optional

	uid: int or str, user id

	gid: int or st, user group id,

	cwd: working dir

	detach: the process is launched but won’t be monitored and
won’t exit when the manager is stopped.

	shell: boolean, run the script in a shell. (UNIX
only),

	os_env: boolean, pass the os environment to the program

	numprocesses: int the number of OS processes to launch for
this description

	flapping: a FlappingInfo instance or, if flapping detection
should be used. flapping parameters are:
	attempts: maximum number of attempts before we stop the
process and set it to retry later

	window: period in which we are testing the number of
retry

	retry_in: seconds, the time after we restart the process
and try to spawn them

	max_retry: maximum number of retry before we give up
and stop the process.

	redirect_output: list of io to redict (max 2) this is a list of custom
labels to use for the redirection. Ex: [“a”, “b”]will
redirect stdout & stderr and stdout events will be labeled “a”

	redirect_input: Boolean (False is the default). Set it if
you want to be able to write to stdin.

	graceful_timeout: graceful time before we send a SIGKILL
to the process (which definitely kill it). By default 30s.
This is a time we let to a process to exit cleanly.

	
get_group(groupname)[source]

	return list of named process of this group

	
get_groups()[source]

	return the groups list

	
get_process(name_or_pid)[source]

	

	
get_process_id()[source]

	generate a process id

	
get_process_info(name)[source]

	get process info

	
get_process_state(name)[source]

	

	
get_process_stats(name_or_id)[source]

	return process stats for a process template or a process id

	
get_process_status(name)[source]

	return the process status:

{
 "active": str,
 "running": int,
 "max_processes": int
}

	active can be active or stopped

	running: the number of actually running OS processes using
this template.

	max_processes: The maximum number of processes that should
run. It is is normally the same than the runnin value.

	
manage_process(name)[source]

	

	
monitor(name_or_id, listener)[source]

	get stats changes on a process template or id

	
on(evtype, listener)

	subscribe to the manager event eventype

‘on’ is an alias to this function

	
once(evtype, listener)

	subscribe to the manager event eventype

‘on’ is an alias to this function

	
processes_stats()[source]

	iterator returning all processes stats

	
remove_group(groupname)[source]

	remove a group and all its processes. All processes are
stopped

	
remove_process(name)[source]

	remove the process and its config from the manager

	
restart(callback=None)[source]

	restart all processes in the manager. This function is
threadsafe

	
restart_group(groupname)[source]

	restart all processes in a group

	
restart_process(name)[source]

	restart a process

	
run()[source]

	Convenience function to use in place of loop.run()
If the manager is not started it raises a RuntimeError.

Note: if you want to use separately the default loop for this
thread then just use the start function and run the loop somewhere
else.

	
running_processes()[source]

	return running processes

	
send_signal(name_or_id, signum)[source]

	send a signal to a process or all processes contained in a
state

	
start(apps=[])[source]

	start the manager.

	
start_group(groupname)[source]

	start all process templates of the group

	
start_process(name)[source]

	

	
start_processes()[source]

	start all processes

	
stop(callback=None)[source]

	stop the manager. This function is threadsafe

	
stop_group(groupname)[source]

	stop all processes templates of the group

	
stop_process(name_or_id)[source]

	stop a process by name or id

If a name is given all processes associated to this name will be
removed and the process is marked at stopped. If the internal
process id is givien, only the process with this id will be
stopped

	
stop_processes()[source]

	stop all processes in the manager

	
subscribe(evtype, listener)[source]

	subscribe to the manager event eventype

‘on’ is an alias to this function

	
subscribe_once(evtype, listener)[source]

	subscribe once to the manager event eventype

‘once’ is an alias to this function

	
ttin(name, i=1)[source]

	increase the number of system processes for a state. Change
is handled once the event loop is idling

	
ttou(name, i=1)[source]

	decrease the number of system processes for a state. Change
is handled once the event loop is idling

	
unmonitor(name_or_id, listener)[source]

	get stats changes on a process template or id

	
unsubscribe(evtype, listener)[source]

	unsubscribe from the event eventype

	
update_process(name, cmd, **kwargs)[source]

	update a process information.

When a process is updated, all current processes are stopped
then the state is updated and new processes with new info are
started

	
wakeup()[source]

	

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 process Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

process Module

The process module wrap a process and IO redirection

	
class gaffer.process.Process(loop, id, name, cmd, group=None, args=None, env=None, uid=None, gid=None, cwd=None, detach=False, shell=False, redirect_output=[], redirect_input=False, custom_streams=[], custom_channels=[], on_exit_cb=None)[source]

	Bases: object

class wrapping a process

Args:

	loop: main application loop (a pyuv Loop instance)

	name: name of the process

	cmd: program command, string)

	args: the arguments for the command to run. Can be a list or
a string. If args is a string, it’s splitted using
shlex.split(). Defaults to None.

	env: a mapping containing the environment variables the command
will run with. Optional

	uid: int or str, user id

	gid: int or st, user group id,

	cwd: working dir

	detach: the process is launched but won’t be monitored and
won’t exit when the manager is stopped.

	shell: boolean, run the script in a shell. (UNIX
only)

	redirect_output: list of io to redict (max 2) this is a list of custom
labels to use for the redirection. Ex: [“a”, “b”]will
redirect stdoutt & stderr and stdout events will be labeled “a”

	redirect_input: Boolean (False is the default). Set it if
you want to be able to write to stdin.

	custom_streams: list of additional streams that should be created
and passed to process. This is a list of streams labels. They become
available through streams attribute.

	custom_channels: list of additional channels that should be passed to
process.

	
active[source]

	

	
close()[source]

	

	
closed[source]

	

	
info[source]

	return the process info. If the process is monitored it
return the last informations stored asynchronously by the watcher

	
kill(signum)[source]

	send a signal to the process

	
monitor(listener=None)[source]

	start to monitor the process

Listener can be any callable and receive (“stat”, process_info)

	
monitor_io(io_label, listener)[source]

	subscribe to registered IO events

	
pid[source]

	return the process pid

	
spawn()[source]

	spawn the process

	
status[source]

	return the process status

	
stop()[source]

	stop the process

	
unmonitor(listener)[source]

	stop monitoring this process.

listener is the callback passed to the monitor function
previously.

	
unmonitor_io(io_label, listener)[source]

	unsubscribe to the IO event

	
write(data)[source]

	send data to the process via stdin

	
writelines(data)[source]

	send data to the process via stdin

	
class gaffer.process.ProcessWatcher(loop, pid)[source]

	Bases: object

object to retrieve process stats

	
active[source]

	

	
refresh(interval=0)[source]

	

	
stop(all_events=False)[source]

	

	
subscribe(listener)[source]

	

	
subscribe_once(listener)[source]

	

	
unsubscribe(listener)[source]

	

	
class gaffer.process.RedirectIO(loop, process, stdio=[])[source]

	Bases: object

	
pipes_count = 2

	

	
start()[source]

	

	
stdio[source]

	

	
stop(all_events=False)[source]

	

	
subscribe(label, listener)[source]

	

	
unsubscribe(label, listener)[source]

	

	
class gaffer.process.RedirectStdin(loop, process)[source]

	Bases: object

redirect stdin allows multiple sender to write to same pipe

	
start()[source]

	

	
stop(all_events=False)[source]

	

	
write(data)[source]

	

	
writelines(data)[source]

	

	
class gaffer.process.Stream(loop, process, id)[source]

	Bases: gaffer.process.RedirectStdin

create custom stdio

	
start()[source]

	

	
subscribe(listener)[source]

	

	
unsubscribe(listener)[source]

	

	
gaffer.process.get_process_info(process=None, interval=0)[source]

	Return information about a process. (can be an pid or a Process object)

If process is None, will return the information about the current process.

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Gaffer events

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

Gaffer events

Many events happend in gaffer.

Manager events

Manager events have the following format:

{
 "event": "<nameofevent">>,
 "name": "<templatename>"
}

	create: a process template is created

	start: a process template start to launch OS processes

	stop: all OS processes of a process template are stopped

	restart: all processes of a process template are restarted

	update: a process template is updated

	delete: a process template is deleted

	spawn: a new process is spawned

	reap: a process is reaped

	exit: a process exited

	stop_pid: a process has been stopped

Processes events

All processes’ events are prefixed by proc.<name> to make the pattern
matching easier, where <name> is the name of the process template

Events are:

	proc.<name>.start : the template <name> start to spawn processes

	proc.<name>.spawn : one OS process using the process <name>
template is spawned. Message is:

{
 "event": "proc.<name>.spawn">>,
 "name": "<name>",
 "detach": false,
 "pid": int
}

Note

pid is the internal pid

	proc.<name>.exit: one OS process of the <name> template has
exited. Message is:

{
 "event": "proc.<name>.exit">>,
 "name": "<name>",
 "pid": int,
 "exit_code": int,
 "term_signal": int
}

	proc.<name>.stop: all OS processes in the template <name> are
stopped.

	proc.<name>.stop_pid: One OS process of the template <name> is
stopped. Message is:

{
 "event": "proc.<name>.stop_pid">>,
 "name": "<name>",
 "pid": int
}

	proc.<name>.stop_pid: One OS process of the template <name> is
reapped. Message is:

{
 "event": "proc.<name>.reap">>,
 "name": "<name>",
 "pid": int
}

The events Module

This module offeres a common way to susbscribe and emit events. All
events in gaffer are using.

Example of usage

event = EventEmitter()

subscribe to all events with the pattern a.*
event.subscribe("a", subscriber)

subscribe to all events "a.b"
event.subscribe("a.b", subscriber2)

subscribe to all events (wildcard)
event.subscribe(".", subscriber3)

publish an event
event.publish("a.b", arg, namedarg=val)

In this example all subscribers will be notified of the event. A
subscriber is just a callable (event, *args, **kwargs)

Classes

	
class gaffer.events.EventEmitter(loop, max_size=200)[source]

	Bases: object

Many events happend in gaffer. For example a process will emist
the events “start”, “stop”, “exit”.

This object offer a common interface to all events emitters

	
close()[source]

	close the event

This function clear the list of listeners and stop all idle
callback

	
publish(evtype, *args, **kwargs)[source]

	emit an event evtype

The event will be emitted asynchronously so we don’t block here

	
subscribe(evtype, listener, once=False)[source]

	subcribe to an event

	
subscribe_once(evtype, listener)[source]

	subscribe to event once.
Once the evennt is triggered we remove ourself from the list of
listenerrs

	
unsubscribe(evtype, listener, once=False)[source]

	unsubscribe from an event

	
unsubscribe_all(events=[])[source]

	unsubscribe all listeners from a list of events

	
unsubscribe_once(evtype, listener)[source]

	

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 Webhooks

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

Webhooks

Webhooks allow to register an url to a specific event (or alls) and the
event will be posted on this URL. Each events can triger a post on a
given url.

for example to listen all create events on http://echohttp.com/echo you
can add this line in the webhooks sections of the gaffer setting file:

[webhooks]
create = http://echohttp.com/echo you

Or programatically:

from gaffer.manager import Manager
from gaffer.webhooks import WebHooks
hooks = [("create", "http://echohttp.com/echo you ")
webhooks = WebHooks(hooks=hooks)

manager = Manager()
manager.start(apps=[webhooks])

This gaffer application is started like other applications in the
manager. All Gaffer events are supported.

The webhooks Module

	
class gaffer.webhooks.WebHooks(hooks=[])[source]

	Bases: object

webhook app

	
active[source]

	

	
close()[source]

	

	
decref()[source]

	

	
incref()[source]

	

	
jobcount[source]

	

	
maybe_start_monitor()[source]

	

	
maybe_stop_monitor()[source]

	

	
refcount[source]

	

	
register_hook(event, url)[source]

	associate an url to an event

	
restart()[source]

	

	
start(loop, manager)[source]

	start the webhook app

	
stop()[source]

	stop the webhook app, stop monitoring to events

	
unregister_hook(event, url)[source]

	unregister an url for this event

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 procfile Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

procfile Module

module to parse and manage a Procfile

	
class gaffer.procfile.Procfile(procfile, envs=None)[source]

	Bases: object

Procfile object to parse a procfile and a list of given
environnment files.

	
as_configparser(concurrency_settings=None)[source]

	return a ConfigParser object. It can be used to generate a
gafferd setting file or a configuration file that can be
included.

	
as_dict(name, concurrency_settings=None)[source]

	return a procfile line as a JSON object usable with
the command gafferctl load .

	
get_env(envs=[])[source]

	build the procfile environment from a list of procfiles

	
get_groupname()[source]

	

	
parse(procfile)[source]

	main function to parse a procfile. It returns a dict

	
parse_cmd(v)[source]

	

	
processes()[source]

	iterator over the configuration

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 pidfile Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

pidfile Module

	
class gaffer.pidfile.Pidfile(fname)[source]

	Bases: object

Manage a PID file. If a specific name is provided
it and ‘”%s.oldpid” % name’ will be used. Otherwise
we create a temp file using os.mkstemp.

	
create(pid)[source]

	

	
rename(path)[source]

	

	
unlink()[source]

	delete pidfile

	
validate()[source]

	Validate pidfile and make it stale if needed

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

 util Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	gaffer documentation

 	Core gaffer framework

util Module

	
gaffer.util.bytes2human(n)[source]

	Translates bytes into a human repr.

	
gaffer.util.bytestring(s)[source]

	

	
gaffer.util.check_gid(val)[source]

	Return a gid, given a group value

If the group value is unknown, raises a ValueError.

	
gaffer.util.check_uid(val)[source]

	Return an uid, given a user value.
If the value is an integer, make sure it’s an existing uid.

If the user value is unknown, raises a ValueError.

	
gaffer.util.daemonize()[source]

	Standard daemonization of a process.

	
gaffer.util.from_nanotime(n)[source]

	convert from nanotime to seconds

	
gaffer.util.get_maxfd()[source]

	

	
gaffer.util.getcwd()[source]

	Returns current path, try to use PWD env first

	
gaffer.util.is_ipv6(addr)[source]

	

	
gaffer.util.nanotime(s=None)[source]

	convert seconds to nanoseconds. If s is None, current time is
returned

	
gaffer.util.parse_address(netloc, default_port=8000)[source]

	

	
gaffer.util.setproctitle_(title)[source]

	

	
gaffer.util.substitute_env(s, env)[source]

	

 Copyright 2012 (c) Benoit Chesneau <benoitc@e-engura.org>.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.4

